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By exploiting the error functions of explicit symplectic integrators for solving separable Hamiltonians, I
show that it is possible to develop explicit time-reversible symplectic integrators for solving nonseparable
Hamiltonians of the product form. The algorithms are unusual in that they are of fractional orders.
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I. INTRODUCTION

Symplectic integrators �1–4� are the methods of choice
for solving diverse physical problems in classical �1,5–7�,
quantum �8–15�, and statistical �16–19� mechanics. For
separable Hamiltonians, the problem is well understood and
many explicit integrators are available �1–4�. However, for
nonseparable Hamiltonians, only implicit algorithms are
known �1–4�. It is generally believed that no explicit algo-
rithms can be developed for solving nonseparable Hamilto-
nians �1,2�. In this work, I show that this is not the case.
Explicit time-reversible algorithms can be developed to solve
a selected class of nonseparable Hamiltonians. The idea is to
model nonseparable Hamiltonians by the error terms of ex-
plicit algorithms when solving separable Hamiltonians. By a
suitable choice of factorization �or split� coefficients, the ex-
plicit algorithm can be made to solve error Hamiltonians,
which are generally nonseparable.

In the usual study of symplectic integrations, one seeks to
eliminate error terms in order to produce higher-order algo-
rithms. These error terms are therefore not of direct interest
and are rarely studied in their own right. In this work, these
error terms are the nonseparable Hamiltonians we seek to
solve. The method can solve nonseparable Hamiltonians of
the product form �sum over repeated indices�

H = Ti�p�Vij�q�Ti�p� , �1�

provided that

Ti�p� =
�

�pi
T�p� �2�

and

Vij�q� =
�2

�qi � qj
V�q� . �3�

For one degree of freedom, given T��p� and V��q�, T�p� and
V�q� can always be obtained by integration.

In the next section we will briefly summarize essential
aspects of symplectic integrators and their error functions,
followed by our explicit integrator for solving the above non-
separable Hamiltonian. Higher-order algorithms are dis-
cussed in Section IV.

II. SYMPLECTIC INTEGRATORS

Given a dynamical variable W�qi , pi� and a Hamiltonian
function H�qi , pi�, the former is evolved by the latter via the

Poisson bracket, and therefore by the corresponding Lie op-

erator �20� Ĥ associated with the function H�qi , pi�,

dW

dt
= �W,H� = � �H

�pi

�

�qi
−

�H

�qi

�

�pi
�W = ĤW , �4�

via exponentiation

W�t + �� = e�ĤW�t� . �5�

For a separable Hamiltonian

H�q,p� = T�p� + V�q� , �6�

the corresponding Hamiltonian operator is also separable,

Ĥ= T̂+ V̂, with T̂ and V̂ given by

T̂ 	 �· ,T� =
�T

�pi

�

�qi
, �7�

V̂ 	 �· ,V� = −
�V

�qi

�

�pi
. �8�

Their corresponding evolution operators e�T̂ and e�V̂ then
shift qi and pi forward in time via

qi��� = e�T̂qi = qi + �
�T

�pi
,

pi��� = e�V̂pi = pi − �
�V

�qi
. �9�

Conventional symplectic integrators correspond to approxi-

mating the short-time evolution operator e�Ĥ in the product
form

e��T̂+V̂� 
 �
i=1

N

eti�T̂evi�V̂, �10�

resulting in an ordered sequence of displacements �9� which
defines the resulting algorithm. Here, we will consider only
time-reversible symmetric factorization schemes such that ei-
ther t1=0 and vi=vN−i+1, ti+1= tN−i+1, or vN=0 and vi=vN−i,
ti= tN−i+1.

The product of operators in Eq. �10� can be combined by
use of the Baker-Campbell-Hausdorff formula to give

PHYSICAL REVIEW E 80, 037701 �2009�

1539-3755/2009/80�3�/037701�4� ©2009 The American Physical Society037701-1

http://dx.doi.org/10.1103/PhysRevE.80.037701


�
i=1

N

eti�T̂evi�V̂ = e�ĤA, �11�

where the approximate Hamiltonian operator ĤA has the gen-
eral form

ĤA = eTT̂ + eVV̂ + �2eTTV�T̂T̂V̂� + �2eVTV�V̂T̂V̂� + O��4� ,

�12�

where eT, eTV, eTTV, etc., are functions of �ti� and �vi� and

where condensed commutator brackets, �T̂T̂V̂�= �T̂ , �T̂ , V̂��,
�T̂V̂T̂V̂�= �T̂ , �V̂ , �T̂ , V̂���, etc., are used. From the way Lie
operators are defined via Eq. �4�, one can convert operators
back to functions �1,7� via �T ,V�→ �V ,T�=−�T ,V�, yielding

HA = eTT + eVV + �2eTTV�TTV� + �2eVTV�VTV� + O��4� ,

�13�

where, again, condensed Poisson brackets,
�TTV�= �T , �T ,V��, etc., are used. For a separable Hamil-
tonian of form �6�, we have

�TV� = −
�T

�pj

�V

�qj
= − TjVj ,

�TTV� = −
�T

�pi

��T,V�
�qi

= TiVijTj , �14�

�VTV� =
�V

�qi

��T,V�
�pi

= − ViTijVj . �15�

By choosing �ti� and �vi� such that

eT = eV = 0, �16�

and either eVTV=0 or eTTV=0, the algorithm would then be
solving the nonseparable Hamiltonian, either

HTTV = TiVijTj or HVVT = ViTijVj . �17�

III. SOLVING NONSEPARABLE HAMILTONIANS

The following factorization scheme gives,

T��� 	 e�v2V̂e�t2T̂e�v1V̂e�t1T̂e�v0V̂e�t1T̂e�v1V̂e�t2T̂e�v2V̂

= exp��3�T̂T̂V̂� + �5E5 + �7E7 + �9E9¯� , �18�

with v0=−2�v1+v2�, t1=−t2, v2=−v1 /2, and v1=1 / t2
2. There

is one free parameter t2 that one can choose to minimize the
resulting error, but not be set to zero. As exemplified by Eqs.
�14� and �15�, for a separable Hamiltonian H=T+V, higher-
order brackets of the form �T ,Q�, �V ,Q� have opposite signs.
Thus, one should choose algorithms with eTQ=eVQ to maxi-
mize error cancellations �19�. This is the basis for symplectic
corrector �21� or processed �22,23� algorithms. The choice of
t2=−61/3
−1.82 forces eTTTTV=eVTTTV and would be a good
starting value. The right-hand side �RHS� of Eq. �18� is the
evolution operator for the nonseparable Hamiltonian HTTV

with time step �t=�3 and leading error terms O��5�. Thus,
the parameter � used by the integrator is �=�3�t. Since
�5=�t5/3, the basic algorithm �18� in terms of �t reads

T��t� = exp �t��T̂T̂V̂� + �t2/3E5 + �t4/3E7 + �t6/3E9¯� .

�19�

The order of the algorithm T��t� �the leading error in the
Hamiltonian� is therefore only 2/3. We will discuss this and
higher-order algorithms in the next section.

By interchange T̂↔ V̂ everywhere, but keeping the coef-
ficients intact, the RHS of Eq. �18� goes over to

e�3�T̂T̂V̂� → e�3�V̂V̂T̂�, �20�

and the basic algorithm T��t� solves the nonseparable
Hamiltonian HVVT. In both cases, the final force or velocity
can be reused at the start of the next iteration. Thus, both
algorithms require four-force and four-velocity evaluations.

For one degree of freedom, any Hamiltonian of the form

H = f�p�g�q� �21�

can be solved. To test the algorithm, we solve the nonsepa-
rable Hamiltonian

HTTV = �1 +
p2

2
�2

�1 + q2� , �22�

where the phase trajectory is harmonic near the origin, but
highly distorted at larger values of �p ,q�. The algorithm’s
separable Hamiltonian is

H = p + 1
6 p3 + 1

2q2 + 1
12q4. �23�

In Fig. 1 we compare the phase trajectories produced by
algorithm �18� with exact trajectories deduced from Eq. �22�.
We set t2=−2 and use a relatively large value of �t=0.005,
so that discrepancies can be seen. The four trajectories are
started at p0=0 and q0=0.5, 1.0, 1.5, and 2.0, respectively.
The error is largest at the positive maximum of p and next
largest at the negative maximum of p. In each case, the error
can be further reduced by making t2 more negative than −2.
We did not bother with this refinement here, but this will be
important in the two-dimensional case discussed below.

We will demonstrate that T��t� indeed converges as �t2/3

in the next section. For more than one degree of freedom, the
generalization of Eq. �21� to

H = 
i

f i�pi�gi�qi� �24�

can always be solved. However, it is more interesting to
generalize Eq. �23� to N dimension by reinterpreting p and q
as radial coordinates: p=�ipi

2, q=�iqi
2. For any radial po-

tential V�q�,

Vij =
V�

q
�ij + �V� −

V�

q
�q̂iq̂j , �25�

where here q̂ is the unit vector. Thus the nonseparable
Hamiltonian HTTV corresponding to the radial Hamiltonian
�23� is
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HTTV = �1 +
p2

2
�2�1 +

1

3
q2 +

2

3
q2�p̂ · q̂�2� . �26�

This can again be solved by our explicit integrator �18�. In
two dimensions, most trajectories are not closed and are
likely to be chaotic. However, for some special initial con-
figurations, a rich variety of closed orbits can be found. Fig-
ure 2 shows a sample of three such closed orbits. For this
calculation, since the order of the algorithm is only 2/3, re-
ducing the step size is not efficient in achieving higher accu-
racy. Instead, we find that the error can be substantially re-
duced by changing t2 to 
−3. For the circle, triangle, and the
twisted orbits of Fig. 3, the step sizes used were �t=0.0012,
0.001, and 0.0005, respectively.

Finally, the standard kinetic-energy term

T�p� = 1
2 pipi �27�

produces

HTTV = �TTV� = piVijpj , �28�

HVTV = �VTV� = − ViVi, �29�

and only HTTV is nonseparable. Here, Vij can be viewed as a
position-dependent inverse mass matrix. This work shows
that if Vij can be derived from a potential function V�q�, then
this nonseparable Hamiltonian can also be solved by our
explicit algorithm. Also, by itself, this quadratic Hamiltonian
does not possess closed orbits for most V�q�, thus explaining
why this error term would disrupt closed orbit of the original
Hamiltonian at large �.

IV. HIGHER-ORDER ALGORITHMS

In the previous section, we have shown that the primitive
algorithm T��t� does work and reproduces the correct phase
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FIG. 1. The phase trajectories of the nonseparable Hamiltonian
�22�. The computed phase points �stars� are compared with exact
trajectories �lines�. The initial values are p0=0 and q0=0.5, 1.0, 1.5,
and 2.0, corresponding to energy values of 1.25, 2.0, 3.25, and 5.0,
respectively.
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FIG. 2. Some two-dimensional orbits of the nonseparable
Hamiltonian �26�. Most trajectory are not closed and only very
special initial conditions can result in closed orbits. The initial con-
ditions �q1 ,q2 , p1 , p2� that produce the circle, the triangle and the
twisted orbits are, respectively, �0.8,0,0,0.425�, �0.99,0,0,0.789�,
and �2.5,0,0,0.1884�.
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FIG. 3. The fractional power convergence of various explicit
algorithms. The relative energy error is evaluated at the first quarter
period t=0.385 841, for the outermost trajectory of Fig. 1. The solid
circles denote results of symplectic algorithms �18�, �30�, and �31�.
The hallow circles give results of MPE algorithms �32� and �33�.
The lines are fitted curves of the form c�tn, with n=2 /3, 4/3, or 2
as indicated.

BRIEF REPORTS PHYSICAL REVIEW E 80, 037701 �2009�

037701-3



trajectory. However, its 2/3-order convergence is very poor
and requires extremely small �t to produce accurate results.
To demonstrate its fractional order convergence, we return to
the one-dimensional case �22� and integrate from t=0, p0
=0, q0=2 to t=T1/4	0.385 841, p�t�=−1.569 196, q�t�=0,
corresponding to a quarter clockwise rotation of the outer-
most phase trajectory of Fig. 1. In Fig. 3, the relative error of
the Hamiltonian �22� at t=T1/4 is plotted as a function of �t.
The error of T��t� can be perfectly fitted with the power law
−2�t2/3, but due to this fractional power the convergence at
small �t is very poor. Fortunately, the error structure �19� of
T��t� allows simple ways of generating higher-order sym-
plectic algorithms. The triplet construction of Creutz and
Gocksch �24� and Yoshida �25� can produce arbitrary high-
order algorithms such as the following 4/3rd-order algo-
rithm:

T4/3��t� = T� �t

2 − s
�T�−

s�t

2 − s
�T� �t

2 − s
� �30�

with s=23/5 and the following �6 /3�rd=second-order algo-
rithm:

T2��t� = T4/3� �t

2 − s
�T4/3�−

s�t

2 − s
�T4/3� �t

2 − s
� �31�

with s=23/7. As can be seen in Fig. 3, these higher-order
symplectic algorithms are orders of magnitude better than
the basic algorithm T��t�. The disadvantage of the triplet
construction is that the computational effort triples in going
from order k /3 to �k+2� /3. For example, the second-order
algorithm T2��t� requires three evaluations of T4/3��t�, or
nine evaluations of T��t�. Alternatively, arbitrary high-order
algorithms can also be obtained via the multiproduct expan-

sion �MPE� �26�, with only quadratically growing computa-
tional efforts. For example, by replacing ki

2→ki
2/3 in �26�,

one obtains

T 4/3
MPE��t� =

1n

1n − 2nT��t� +
2n

2n − 1nT
2��t

2
� , �32�

T 2
MPE��t� =

�1n�2

�1n − 2n��1n − 3n�
T ��t�

+
�2n�2

�2n − 1n��2n − 3n�
T 2��t

2
�

+
�3n�2

�3n − 1n��3n − 2n�
T 3��t

3
� �33�

with n=2 /3 in both cases. Here, T 2
MPE��t� only requires six

evaluations of T��t�. The disadvantage of MPE is that it is
no longer symplectic, but it is like Runge-Kutta-Nyström-
type algorithms. However, as shown in Fig. 3, their energy
error can be much smaller than the triplet symplectic algo-
rithms.

V. CONCLUDING SUMMARY

In this work, I have shown that explicit symplectic inte-
grators can be devised to solve a selected class of nonsepa-
rable Hamiltonians. Any nonseparable Hamiltonian that can
be modeled by the error terms of an explicit integrator can be
solved by the same integrator with changed splitting coeffi-
cients. The initial explicit algorithm is only of fractional or-
der �t2/3, but higher-order algorithms can be easily obtained
by the use of the triplet construction or the multiproduct
expansion.
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